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SPEAKER  VERIFICATlON  USING  COMBINED ACOUSTIC AND 
EM SENSOR SIGNAL PROCESSING‘ 

Ng, L. C., Gable, T. J.,  Holzrichter, J. F. 
Lawrence Livermore National Laboratory and University of California,  Davis 

Livennore, California 9455 0 USA 
P.O. BOX 808, L-491 

ABSTRACT 

Low Power EM radar-like  sensors  have  made  it  possible  to 
measure  properties of the human  speech  production  system  in 
real-time,  without  acoustic  interference.  This  greatly  enhances  the 
quality and  quantity of information  for  many  speech  related 
applications.  See  Holzrichter,  Burnett, Ng, and  Lea, J. Acoustic. 
SOC. A m .  103 ( I )  622 (1998). By combining  the  Glottal-EM- 
Sensor (GEMS) with  the  Acoustic-signals,  we’ve  demonstrated an 
almost 10 fold  reduction  in  error  rates from a  speaker  verification 
system  experiment  under a moderate  noisy  environment (- 1 OdB). 

I. INTRODUCTION 

Acoustic  speech  signals carry a great  deal of information  that  can 
be automatically  converted  to  text,  coded  for  transmission, and 
many other  applications.  However,  under  conditions  with a great 
deal of background  noise,  with  speakers  who do not  speak  clearly 
(e.g.,  who co-articulate, or incompIetely  articulate,  etc.) or who 
speak  with  strong  accents, such systems  often do not  work 
adequately.  Many  mechanisms, by which  additional  information, 
describing  conditions of the  vocal  articulators as the  speech  signal 
is generated,  have  been  examined to increase the accuracy of 
automated  systems.  Examples are TV  images of the  lip  opening, 
jaw open-close  sensors,  electro-glottalgraph  signals  of  the  vocal 
fold  conditions,  etc. 

Recently,  it  has  been  shown  that  very  low  power  Electro  Magnetic 
(EM) radar-like  sensors  can  measure  conditions of many of the 
internal  (and  external)  vocal  articulators  and  vocal  tract 
parameters,  in  real-time, as speech is generated,  Holzrichter (1). 
In particular,  a  voiced  excitation  fbnction of speech has b.een 
obtained by associating EM sensor  signals from  the  glottal  region 
(i.e.,  Glottal  Electro  Magnetic  Sensors,  or GEMS) with  sub-  or 
supra-glottal air pressure  pulsations,  Bumett (2). These data, 
combined with corresponding  acoustic  data,  enable  robust 
methods for sampling  background  noise  data,  and  vastly  increase 
the  quality  and  quantity of information  for  almost  all  applications 
involving  speech  processing  and  use. 

In addition,  these  techniques  enable  accurate  definitions of time 
periods of phonation,  and  using  the  statistics of the  user’s 
Ianguage (3) enable  the  definition of periods  preceding  and 
following  phonation  when  unvoiced  speech is likely  to  occur. In 

. addition,  they  enable  the  determination of periods of no  speech, 
when sampling of background  noise  signals  can  reIiably take 
place.  Along  with  robust  speech  presence  determination,  the 
timing and spectral  content of the  determined  excitation  function 
enable  real-time  filters  to be constructed  for  purposes of denoising 
corresponding  acoustic  signa1  segments. 

’ Last update: December 1 1,2000 

2. HOMODYNE SENSORS 

EM radar-like  sensors  have been  designed  to  transmit EM waves 
at 2.3 GHz with 0.2 m W  of total  power. This level is well below 
continuous  international  exposure  standards  for  human use. The 
sensors  use  a  homodyne  field  disturbance  mode of operation  that 
resembles  an  interferometer  measuring  the  reflection of a 
transmitted  wave  against  a local (phase  reference)  wave. As a 
reflecting  interface moves, the  phase  of the reflected  wave  varies 
with  respect  to  the  stationary  local  wave, and a  signal  associated 
with  this  change is detected by it- mixer  and  filter  combination. 
The EM sensor  positioned near the glottis in  Figure 1 measures 
the positional changes of glottal  tissues, as the aidtissue  interface 
moves  versus time, driven  by air pressure  waves from the glottis 
opening  and  closing.  Also  Figure 1 shows  an EM sensor  signal 
that  characterizes the glottal  tissue  interface  motion  versus time, 
and  which  can be associated  with the voice  excitation  function [2]. 

Horizontal voml tract wlth 4 
resonator chambers 

EM scnsar 
excitation 

Figure 1. A linearized  vocal  tract  showing  locations of EM 
sensors,  corresponding  excitation  and  acoustic  functions, and 
resulting  transfer  function. 

3. , APPLICATIONS OF GEMS TO 
SPEAKER VERIFICATION 

This section  briefly  outkines the method of extraction  for each of 
the  different  speaker  verification  parameters.  These  parameters 
form a  set of feature  vectors used in  the  dynamic  time  warping 
algorithm  to  calculate  the  performance  “distance” used to make 
the  accepvreject  decision on an identity  claim.  Verification 
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parameters represent the individuality of the speaker, 
containing  information about the timing,  pitch, amplitude or 
spectrd content of the  speech. A conventional  speaker 
verification  used  features  derived &om Cepstral  coefficients [ 5 ] .  
However,  the GEMS sensor  provides  additional,  uncorrelated, 
acoustically  noise  fiee,  features that include: GEMS pitch, GEMS 
shape  parameter (GSP), auto-regressive  and  moving  average 
( M A )  coefficients. 

GEMS Pitch  Extraction 

The  use of  the  GEMS  signal  enables  great  speed  and  accuracy  in 
pitch  estimation.  Figure 2 shows  a  sample  three-glottal  cycle 
graph of GEMS data. The  smoothness  of  the GEMS signal and 
the  linearity  of  the  signal  during the positive-to-negative  zero 
crossing  allows  the  use of a  simple  interpolated  zero-crossing 
algorithm.  The  algorithm  searches  for  the  positive  to  negative 
crossing of the  signal.  Burnett (1 999) developed the GEMS pitch 
algorithm  used  in  support of this  study [Z]. 

Very little  pre-processing  or  error  checking  needs  to  be  carried  out 
in the GEMS pitch  extraction  algorithm.  First,  the GEMS signal 
is  bandpass  filtered  with an analog  filter with  3-dB  frequencies  of 
70 Hz-7 Hz,, which  produces  the  clean  signal  shown  in  Figure 2. 
Then, any linear  trend  is  removed  before  the  zero-crossing  search 
is  carried  out.  The  algorithm  uses 30 millisecond  search  windows 
with  no  overlap. An energy  calculation  is  done to determine  if  the 
speech  is  voiced  or  unvoiced. I f  voiced,  the  first  three  zero 
crossings  are cdculated and  the  average  pitch  for two glottal 
cycles  is  determined.  The  next  window  begins  after  the  secund 
glottal  cycle and the  process  is  repeated. Any anomalous  pitch 
values  outside  the  typical  pitch  range  of 50 Hz-400 Hz are  zeroed 
out.  The GEMS pitch  algorithm also has  the  inherent  benefit of 
yielding  pitch-synchronous  information. The pitch is  found  via 
the  zero  crossings,  which  are  natural  pitch  cycle  boundaries.  The 
crossing  locations  can  be  used  to do pitch  synchronous 
processing,  which  increases  the  accuracy  of FFTs. The  fairly 
linear  shape  of  the  signal  near  the  zero  crossings  also is conducive 
to  linear  interpolation  for  a hrther increase  in  accuracy  for  the 
pitch  values.  The  algorithm  also has the  unique  ability  to  specify 
how  many  glottal  cycles  are  averaged to make a  pitch  estimate.  In 
this work  two  cycles  are  used  per  pitch  estimate,  but  any  number 
of integer glottal cycles  can  be  used.  Two  glottal  cycles  were 
found to be optimal  in  pitch  estimation  because it is long  enough 
to get a smooth  pitch  contour,  and  yet short enough  to  capture 
natural  pitch  fluctuations. 

GEMS Shape Parameter (GSP) 

The  shape of the GEMS output  is  very  distinct  for  each  individua1. 
Figure 3 shows an example of a GEMS signal  for  a  portion of 
speech  for four different  speakers.  Each  speaker’s  waveform is 
unique.  Although  they  share  certain  qualities like the  general 
shape,  subtle  differences  are  seen  in the slope of the rise  and  fall 
of  the  waveform  along  with  other  variations  in  shape.  Unlike  the 
other  parameters  discussed in this  chapter  like  spectral  coefficient 
and  pitch,  the  GEMS  signal  shape  is  not  time  varying. 

The motions of the  glottis and tracheal walls are  not  different  for 
the  different  phonemes (Burnett 1999), although  they  can vary for 
different  registers of voice.  All of our  speakers  used  their  normal 
speaking  voice,  referred  to as the  modal or  chest  register, so this 
was  not a  factor  in  these  experiments.  The GEMS signal  is  related 
to  the  excitation  pressure of the  system,  which  is  filtered  by  the 
vocal  tract  to  produce  the  different  phonemes.  Instead  of a 
parameter  that  varies  in  time  with  the  speech,  the GEMS shape is 
relatively  constant throughout speech.  The  shape of the GEMS 
signal  changes only briefly  during  the  beginning  and  ending  of 
phonation,  but this was recognized  and  only  samples fiom the 
middle  of  phonation  were  processed.  This  unique  quality  of  the 
GEMS signal  presents  a  new  opportunity in extracting a parameter 
for verification  use. 

A new  parameter was needed  to  characterize  the  shape of the 
waveform from the GEMS device  and  compare  it to different 
speakers.  Although many different  characterizations  were 
examined,  such as wavelets,  polynomial  coefficients  and  the K-L 
expansion  coefficients,  a  simple  method  using  the GEMS signal 
shape  directly  worked  best. The GEMS shape  parameter (GSP) is 
a based  on  averaged  two-glottal  cycle  waveforms from each 
sentence  data  file.  Many  two-glottal  cycle  waveforms from data 
file  are  averaged  together to produce  one  two-cycle  waveform - 
this waveform is the GSP. Many  cycles  were  averaged as to 
smooth out any anomalous cycles.  Since the GEMS  signal  is  not 
stable  at  the  onset  and  offset of speech,  the  algorithm  did not 
sample  any  waveforms  near  the  beginning or end of  phonation, 
normally 6-10 windows fiom the  boundaries by using  the 
voicedunvoiced  boundary  information from the GEMS pitch 
algorithm. 

The GSP algorithm  also  separated  the  waveforms  used  in  the 
average, so as not  to  use  consecutive  two-glottal  cycle  windows. 
This would  eliminate any heavy  use of anomalous waveforms in 
the GEMS signal  due  to  speaker or device  motion. As with  the 
gain  parameter,  shape  (and  not  amplitude)  is  the important 
infomation, so care  had  to  be  used  when  choosing a distance 
calculation  for  the GSP in the DTW algorithm. The correlation 
coefficient  distance  and  standard DTW distance  (Euclidean)  were 
tested  on  the  normalized GSP waveforms and the DTW distance 
was found to  have  consistently  lower  error  rates,  about 2% lower 
on  average. 

0 0.005 0.01 0.015 0.02 0.m 
liW (SeCS) 

Figure 2. A typical GEMS waveform from a  male  speaker 
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Figure 3. Example  of GSP fiom 4 different  speakers 

Auto Remessive Moving  Average (ARMA) Model 

Spectral  coefficients,  like LPC and  cepstral,  estimate  the  transfer 
hnction using  only  the  acoustic signal (output of the LTI  system). 
These  methods,  while fut, are  inherently  inaccurate  due  to  a  lack 
of information  about  the  input  to  the  system  (the  excitation 
function).  They  make  simple  assumptions  about the input  to  the 
LTI system;  most  commonly  assuming the input  to  the  system  is 
white  (spectrally  flat). The GEMS signal yields  information  about 
the  excitation hc t ion  while  the  acoustic  signal  is  the  output 
signal.  Together  they  can be used in an input-output or pole-zero 
model. These are  often  referred  to as Auto  Regressive  Moving 
Average  or ARMA models.  The ARMA name  comes  fiom  the 
models  origin  in  statistics.  The AR (Auto  Regressive)  part  is 
information fiom the  output;  LPC is a very  popular AR model. 
AR models  are  also  called  all-pole  models,  because  it  uses  only 
poles  to  model  the  system.  The MA (Moving  Average)  part is 
information  about  the input function  and is conversely  calted an 
all-zero  model  because  the  denominator  is  a  constant. An AEUvfA 
model  uses  poles  and  zeros,  both  input  and  output  signals  to 
model  the  system.  The  ability  to  measure both input  and  output 
signals  gives  access to the  class of more  accurate ARMA models. 

Cemtral  Coefficients 

The  cepstrum is a way to  approximate  the  transfer  function of the 
voiced  speech  system. By truncating  the high  frequency  content 
of the  cepstrum, we  can  retain  the  information  from  the  transfer 
fimction, H(w) , and  get  rid of the  information  from  the  excitation 
function, x ( w ) .  By  keeping  only  the  first  10  to 20 components 
of  the  real  cepstrum,  called  the  cepstral.  coefficients, an estimate  of 
the  transfer  function  with  fewer  coefficients is obtained.  With  the 
truncated  cepstrum,  the  inverse  transforms of can  be  used to 
obtain an approximation  of  the  transfer fLnctionH(w). The 
cepstral  coefficients  are  used  extensively  not only in  speaker 
verification  system,  but  also  for  other  applications  including 
speech  recognition [ 5 ] .  

4. EXPERIMENTAL  RESULTS 

The  twelve  sentences  chosen  for  our  database  were  all  common 
speech application  sentences,  appearing in  many  speech  corpuses, 
like  the  TIMIT corpus, which was developed for this experiment 
[7 ] .  It  was  noticed  during  the  experiment  that  the  longer,  more 
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complex  sentences  produced  lower  error  rates.  This is not  too 
surprising its they  contain  more  information.  After  the  decision 
was  made to reduce  the total number of sentences  tiom 12 to 3 so 
that  the  processing  could  be  completed  in a reasonable amount of 
time,  the  logical  choice was to choose  the  ones  with  the  lowest 
EER. However,  it  is  not  always  easy to determine  which  ones 
would  have  the  lowest EER without  testing  them  all,  defeating  the 
purpose of choosing  only 3. A method was sought to  give an 
indication of EER performance  based on sentence  length. 
Calling  it  “sentence  length”  is  a  little  misleading.  It is not  the 
length  in  time it takes to speak the  sentence,  that  would  be  speaker 
specific  due to different  speech  rates. Or is it how many words or 
syllables  per  sentence? A new  term  called  sentence  complexity 
was  chosen to describe  the  parameter  that was sought.  The 
sentence  complexity is a  number,  the  larger  the  number, the more 
complex  or  more  speech  content  in  the  sentence.  The  complexity 
number (C) is  simply  the  number of syllables (S) added  to  the 
number  of  words (W), C = S+W. This method  emphasizes 
sentences  that  have  many  small  words and sentences  that  have 
few,  many-syllable words. Both of  these  sentence  types  contain 
more  speech  information  than  small, short, one-syllable  sentences. 

A selected EER versus  sentence  complexity  plot is shown  below 
(Figure 4) for CCl(the first cepstral  coefficient).  Some  sentences 
had  the  same  complexity  number, so some  complexity  values  have 
multiple  data  points.  There  is  a  linear  trend  relationship  between 
EER and  sentence  complexity,  seen  most dearly in the results for 
CCI in  Figure 4. In  general, as the  sentences  get  more  complex, 
the EER gets  lower.  Therefore,  choosing  the  most  complex 
sentences  will  yield  the  best  EER.  The  explicit  linear  relationship 
between  EER  and  sentence  complexity is shown  in  the  figures 
below. One can  write in general 

EER=aC+p 

where a and p are  the  slope  and  bias  coefficients. 

1 
I 
I 

CC1 EER vs. Sentence complexity 

I -12 14 16 <a 20 22 24 
Sentence Complexity (Syl+Words) 

Figure 4. Equal  error  rate  versus  sentence  complexity 

Overall  Verification EER Results 

The results  above  demonstrate  the  ability of the  individual 
verification  parameters  to  distinguish  and  veri@ the identity of 
speakers.  However,  a  working  verification  system  would  not  rely 
on one  parameter  alone to make  the accepthejet decision.  The 
Bayes  classifier is used  to  combine the statistics of the  individual 
parameters  and  calculate  a  combined,  single EER. As described 
earlier,  the  classifier  maps  the  normalized DTW distances from all 
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the  participating  parameters  into one vector.  This  mapping  allows 
for a calculation of the  overall EER, which is lower than the EER 
from  any of the  individual  parameters.  Parameters are chosen so 
that  they  compliment  one  another by being as statistically 
independent as possible. 

Figure 5 shows  the  results of the EER using the Bayes  classifier. 
The  EER  points  on  the far left  use two verification  parameters  and 
an additional parmeter is  added as the  curve  moves  to  the  right. 
The three  lines on each  graph  represent  different  possible 
verification  systems.  The  first two have  been  discussed  thus far: 
the  traditional  (blue)  and  the GEMS enhanced  (red)  systems. 
Their  performance  is  similar  with  the  noiseless  data.  This is not 
completely surprising given  that  they  both  contain  very  similar 
information: gain, pitch,  spectral coeficients and  delta-spectra1 
coefficients. Both sets of feature  vectors  have  similar  information 
content and both  sets of data  were  recorded  in  a  controlled 
laboratory  setting. The third  (green)  line was constructed to show 
what  the  additional,  purely GEMS based, GEMS shape  parameter 
(GSP) can  provide. An ultimate  EER of 0.01% is  obtained  using 
the GEMS enhanced  system  with  the GSP. This  is  a  factor of 
seven  lower  than the traditional  system.  The  motivation  behind 
the  third  line  is as follows.  Every  point  in  the  first two curves  (red 
and blue)  adds  an analogous parameter  to  the  classifier. For 
example,  the  second  point  adds  the CC, parameter in the 
traditional  system  and  the  analogous AS? is added  to the GEMS 
enhanced  system.  However,  there is no acoustic based analog to 
the GSP. This additional  pure GEMS based  feature  vector 
provides  insight  into how an optimized GEMS verification  system 
would perform,  even  without  the  presences of noise. 

As seen in the  figures  below,  the  three  lines are now well 
separated  due  to  the  addition of noise  to  the  acoustic  data, 
especially  when  the  system  includes  more than two verification 
parameters.  They  differ by a  factor of 1.7 with the  added  white 
noise  and  by  over a factor  of 3 with  the  color  noise.  The  bottom 
line  (green),  which is the GEMS system  with  the GSP parameter, 
illustrates  again  how  well  the  system  can  perform,  even in the 
presence of noise.  The  third GSP augmented  system shows almost 
a factor of 6 improvement  over  the  traditional  system  with  white 
noise  and  over a factor of 9 improvement  with  the  color  noise. 

Figure 5 .  EER performance as a  function of number of 
feature parameters. 
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5. CONCLUSION 

Low power EM radar-like  sensors can measure the internal 
properties of the human glottal  regions  safely and non-invasively. 
These  data, together with the  user’s speech signal and  reliable 
sampling of the acoustic  noise signah, enable  novel  applicaton  to 
a speaker  verification  system.  Results of the  experiments shown 
that  error  rate  can be reduced  by  almost a factor of 10. This  is due 
largely  to  the  non-acoustic,  independent  nature of the GEMS 
measurements. It is  anticipated  that  measurements of other EM 
sensor  physiological  conditions of the  speech  articulator,  such as 
tongue  and lips motions, will firther reduce  the  verification  error 
rate. 
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